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Abstract The transmission function describes the passage of the electric current from
one point of an electric circuit to another. By now, this is also applied to molecules
which are potential candidates for uses in the molecular electronics. We mean the
modern branch of electronics which has a goal of reducing the sizes of its devices down
to molecular ones and planning indeed to apply single molecules as conducting wires
and functional components of microcircuits. For calculating the transmission function,
some authors utilize the well-known idea of representing a molecule by a (molecular)
graph, which allows them to apply for treating the latter also powerful methods of
spectral graph theory. For instance, we refer to the paper by Fowler et al. (Chem Phys
Lett. 465 2008) 142–146, where one such expression for this function is given. Our
objective is to demonstrate that the same calculational result can be obtained using
a different set of characteristic polynomials of graphs (which also slightly reduces a
mathematical notation). Specifically, we apply one theorem of Kolmykov to the basic
formula derived by these authors.

Keywords Molecular electronics · Transmission function · Molecular graph ·
Characteristic polynomial · Spectral theory of graphs · Theorem of Kolmykov

1 Introduction

In the theory of electric circuits, the transmission function describes the passage of
electric current between two selected points of a circuit. By now, this has also been
applied to molecules. The governing idea for the microminiaturization of electronic
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devices is to reduce sizes of these devices down to molecular ones. To this end, many
molecules are now viewed as potential candidates to become microwires, microresis-
tors, and other functional components of microcircuitry.

This process also touches upon mathematical tools which may better serve for such
goals. Our attention is first of all attracted by formulae which utilize spectral theory of
graphs. Herein, we modify one already known formula using a theorem by Kolmykov
and some other technics.

Let G = (V ; E) be a finite connected graph with vertex set V and edge set E; |V | =
n; |E | = m. Specifically, in a molecular graph G(M), the set V represents atoms, and
E does chemical bonds of a respective molecule M . In general, molecular graphs
admit multiple edges and also selfloops depicting valence electrons. The adjacency
matrix A = [a jk]n

j,k=1 of a simple molecular graph has an entry

a jk =
{

0, if j and k are not connected by a chemical bond;

1, if j �= k and atoms j and kare connected with a chemical bond.
(1)

Below, we consider also graphs with weighted selfloops, which demands to intro-
duce nonzero quantities for diagonal entries of the adjacency matrix. (Notice that the
formalism of weighted selfloops can be reduced here to considering just weighted
vertices, since both approaches produce the same adjacency matrix.)

To us, of great importance is the characteristic polynomial P(A; x) = det(x I − A)

of the adjacency matrix A (having here only 0s and 1s as nondiagonal entries), where I
is a diagonal unit matrix. In spectral theory of graphs [1], the characteristic polynomial
P(G; x) of a graph G is defined as P(A; x).

Now, introduce the following (standard) notation [1]: G−α, G−αβ, G−α−β, G+αβ

which consecutively denote a graph G less its vertex α, less its edge αβ (but not the
endpoints, if G has and edge αβ), less endpoints α and β with all incident edges, and
the graph G with added edge αβ if this had not earlier been in G; 1 ≤ α, β ≤ n.

The conductance gαβ = 2e2

h̄ Tαβ(ε) between two sites α and β in a molecular
network [2] depends on the transmission function, or transmission coefficient Tαβ(ε)

[3,4]. According to expression (1) in [5], the transmission function Tαβ(ε) between two
atoms of a molecule without a bond connecting them (or between two disconnected
vertices α and β of the respective molecular graph) is written down as

Tαβ(ε) = sin qα sin qβ (ũt̃ − s̃ṽ)

|ei(qα+qβ)s̃ − eiqβ t̃ − eiqα ũ + ṽ|2 , (2)

where qα and qβ are the wavevectors of the electron orbitals (with energy ε) in left and
right contacts, respectively, while s̃ := P(G; x), t̃ := P(G−α; x), ũ := P(G−β; x),
and ṽ = P(G−α−β; x).

In this paper, we deal first with a fragment of the last formula, viz.:

Ω := ũt̃ − s̃ṽ ≡ P(G−α; x)P(G−β; x) − P(G; x)P(G−α−β; x). (3)
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Here, we turn to the next section, where the expression Ω will be given in a modified,
slightly reduced form.

2 The main part

Kolmykov proved the following [6,7]:

Theorem 1 Let G, G+αβ, Gαβ, Gα, Gβ, G−α−β be as explained. Then,

P(G+αβ; x) = P(G; x) − P(G−α−β; x)

−2
√

P(G−α; x)P(G−β; x) − P(G; x)P(G−α−β; x). (4)

The reader can immediately see that the selected fragment Ω of (2) is just the entire
expression under the square root in (4). Hence, making elementary transformations of
(4), we can resolve it for Ω , which gives

Ω = 1

4
[P(G+αβ; x) + P(G−α−β; x) − P(G; x)]2. (5)

Now, we come to:

Proposition 2 Let w̃ := P(G−αβ; x) and Tαβ(ε) be as in (2). Then

Tαβ(ε) = sin qα sin qβ (ṽ + w̃ − s̃)2

4 · |ei(qα+qβ)s̃ − eiqβ t̃ − eiqα ũ + ṽ|2 , (6)

which involves one new polynomial w̃ but drops two polynomials t̃ and ũ in the
enumerator, used earlier in (2).

We further modify the denominator of (2). To this end, we introduce here another
auxiliary graph G◦◦ which is the above graph G with two weighted selfloops now
attached to vertices α and β: the former has the weight ξα = e−iqα and the latter
ξβ = e−iqβ . Note that now adjacency matrix A(G◦◦) of the graph G◦◦ has two nonzero
diagonal entries aαα = ξα and aββ = ξβ .

Further, let Δα be obtained by substituting zeros (0s) for all entries of the αth
column of the secular determinant Δ0 := det[x I − A(G)] except for its only on-
diagonal entry which is now set to −e−iqα (but was originally 0, in Δ0). That is,
−e−iqα is the only nonzero entry in the αth column of Δα . Moreover, let Δβ denote
the determinant obtained in a similar way, involving the on-diagonal entry −e−iqβ in
the βth column. Lastly, denote by Δαβ the determinant resulted from both operations
performed at once (on both αth and βth columns and respective on-diagonal entries
of Δ0).

Any determinant of an n × n matrix (n > 1) with only one nonzero entry in
some column(s) can be reduced to a determinant of a smaller size. Employing such
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reduction here allows to compile the following set of equalities (needed for the proof
of the forthcoming Lemma 3):

⎧⎪⎪⎨
⎪⎪⎩

Δ0 = det[x I − A(G)],
Δα = −e−iqα det[x I − A(Gα)],
Δβ = −e−iqβ det[x I − A(Gβ)],
Δαβ = +e−i(qα+qβ) det[x I − A(Gαβ)].

(7)

The next lemma is here important:

Lemma 3 Let � denote the denominator of (2) and r̃ = P(G◦◦; x). Then

� = |ei(qα+qβ)(s̃ − e−iqα t̃ − e−iqβ ũ + e−i(qα+qβ)ṽ)|2 = |ei(qα+qβ)r̃ |2. (8)

Proof First, we partially expand the secular determinant Δ := det[x I − A(G◦◦)]
using only two columns (rows) which contain diagonal entries x −e−iqα and x −e−iqβ

(involving the weights of selfloops attached to vertices α and β, respectively). This
gives

Δ = Δ0 − Δα − Δβ + Δαβ.

Using (8), we rewrite this equation in a more explicit form:

Δ = det[x I − A(G)] − e−iqα det[x I − A(G−α)] − e−iqβ det[x I − A(G−β)]
+e−i(qα+qβ) det[x I − A(G−α−β)].

The obtained expansion in determinants can equivalently be rewritten as

Δ = P(G; x) − e−iqα P(Gα; x) − e−iqβ P(Gβ; x) + e−i(qα+qβ) P(G−α−β; x).

Hence, using the notation of [5], we get

Δ = s̃ − e−iqα t̃ − e−iqβ ũ + e−i(qα+qβ)ṽ = r̃ ,

which is the proof. ��
Now, by virtue of Lemma 3, we easily derive from Proposition 2 our final result:

Proposition 4 Let Tαβ(ε) be as above. Then

Tαβ(ε) = sin qα sin qβ (ṽ + w̃ − s̃)2

4 · |ei(qα+qβ)r̃ |2 . (9)

Note in passing that the expression ei(qα+qβ)r̃ in (9) may be replaced by its complex
conjugate, since (9) uses just the modulus thereof.
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